Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall

نویسندگان

  • Yi Quan Ye
  • Chong Wei Jin
  • Shi Kai Fan
  • Qian Qian Mao
  • Cheng Liang Sun
  • Yan Yu
  • Xian Yong Lin
چکیده

Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide

Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana. In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous...

متن کامل

Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots

Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induce...

متن کامل

Nitrate does not result in iron inactivation in the apoplast of sunflower leaves.

It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) ...

متن کامل

Protein profile of Beta vulgaris leaf apoplastic fluid and changes induced by Fe deficiency and Fe resupply

The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 μM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic...

متن کامل

Effects of short term iron citrate treatments at different pH values on roots of iron-deficient cucumber: a Mössbauer analysis.

Alkaline pH values and bicarbonate greatly reduce the mobility and uptake of Fe, causing Fe deficiency chlorosis. In the present work, the effects of pH and bicarbonate on the uptake and accumulation of Fe in the roots of cucumber were studied by Mössbauer spectroscopy combined with physiological tests and diaminobenzidine enhanced Perls staining. Mössbauer spectra of Fe-deficient cucumber root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015